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Histogram method to obtain heat capacities in lipid monolayers, curved bilayers, and membrane
containing peptides

Vesselka P. Ivanova and Thomas Heimburg*
Membrane Thermodynamics Group, Max-Planck-Institute for Biophysical Chemistry, D-37077 Go¨ttingen, Germany

~Received 1 June 2000; revised manuscript received 10 November 2000; published 29 March 2001!

Lipid monolayer chain melting transitions were simulated using a two-state Doniach model, and experimen-
tal melting profiles of lipid vesicles were analyzed. We sampled the information of a Monte Carlo simulation
into a single broad histogram containing complete information about the distribution of states. The information
of the monolayer histogram was first used to calculate the melting behavior of a bilayer constructed from two
uncoupled monolayers. We then fitted calorimetric heat profiles of various preparations of dipalmitoyl phos-
phatidylcholine vesicles. This analysis was extended to lipid bilayers. A fixed mean bilayer curvature was
shown to result in a broadening of bilayer melting profiles. We furthermore used the histogram method to
obtain the chain melting behavior of simple lipid-peptide mixtures.
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I. INTRODUCTION

Many biological membrane lipids melt in a physiolog
cally relevant temperature regime. They undergo a ch
order transition from a gel phase to a fluid phase, which
been treated extensively in the literature. Besides the us
mean-field theories for describing lipid melting@1–5#, which
approximate some fluctuating features of the membrane
tem into average quantities, a common approach consis
the application of statistical thermodynamics models that
scribe the local nature of the fluctuations more accurately@6#.
These models usually reduce the wealth of states of i
vidual lipids into subensembles with given average energ
and entropies. Ising-like two state models with only gel a
fluid lipid states ~also called Doniach models! have been
shown to describe transitions adequately@7–11# ~see also the
recent review in Ref.@12#!, but models employing more
states have also been used, such as the ten-state Pink m
@13,6,14#. Ising and Pink models were compared by Mour
senet al. @3#, and found to yield comparable results outsi
of a first-order transition regime. The distribution of stat
was then explored with Monte Carlo simulations. The adv
tage of such statistical thermodynamics treatments o
mean-field approaches is that they provide insight into
magnitude of enthalpy or volume fluctuations@15#, and into
domain formation@16,17# within the lipid membrane plane
The obvious disadvantage is that the Monte Carlo–like sim
lations used to evaluate the models produce no analy
solutions and are partially time consuming. The main mo
vation for employing Monte Carlo simulations is that
complex systems the degeneracy of the microconfigurat
of the ensemble does not have an analytical solution,
thus has to be explored numerically. Ferrenberg and Swe
sen@18# pointed out in 1988 that the information from Mon
Carlo simulations can be used in a much more efficient w
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if the degeneracy of microstates of previous simulations
not recalculated for each set of parameters. Since this de
eracy is independent of the parameters~such as melting en-
ergies or interactions energies! of the system, it can be
mapped into histograms consisting of small bins covering
phase space. Once the degeneracy of microstates is know
can be used to generate solutions for general sets of pa
eters in the proximity of the previous parameter set. T
solution is then quasianalytical. This concept has be
widely used to reduce computer time, for example to d
scribe transitions in two-dimensional systems. In lipid sy
tems it has been used for Ising-like~Doniach! models@19# or
Pink models@20–22#. One problem with this kind of analysi
is that usually in Monte Carlo simulations only a small pa
of the phase space is explored, which limits the applicabi
of the Ferrenberg-Swendsen approach. For some simple
tems, however, it is possible to collect information about
degeneracy of states for the entire~accessible! phase space
either by performing Monte Carlo simulations close to cri
cal points where fluctuations are very high@19#, or by com-
bining histograms of simulations using various parame
sets@23#. For the two-state Ising model this is quite simp
since it has only two variables—the number of spins in eit
state and the number of nearest neighbor interactions of
like spins. For such a system the phase space can be ras
into two-dimensional histograms, where the informati
about the states in a small volume of the phase spac
collected into bins.

With few exceptions@20,11#, the melting of lipid mem-
branes has been modeled with monolayer simulations. T
implicitly requires that a bilayer system consists of u
coupled monolayers. In experimental systems, howe
vesicles are usually not freely fluctuating membrane she
but are rather located in vesicular systems of predefined
ometry; the fluctuations in the two monolayers are usua
not uncoupled@11#. Lipids change their area by about 25
upon melting. An asymmetry of the areas of the two mon
layers automatically induces a bilayer curvature. If the c
vature is fixed, the fluctuations in area on both monolay
are confined such that on average the area difference on

-
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VESSELKA P. IVANOVA AND THOMAS HEIMBURG PHYSICAL REVIEW E63 041914
monolayers is constant. This results in a coupling of the fl
tuations in both monolayers.

The curvature elasticity of membranes is coupled to
lateral monolayer compressibility@24#. The monolayer com-
pressibility, however, is a function of the area fluctuatio
which are also related to the heat capacity@15,25#. Since
curvature constrains the area fluctuations it must have
influence on the heat capacity@26#. Experimentally it has
been found that supported membranes with fixed curva
display broadenedcP profiles @27#.

In this paper we describe transitions in lipid systems w
a broad histogram technique for monolayer systems, ba
on a Doniach model. The term ‘‘broad histogram’’ stands
a histogram that covers information about the entire ph
space, usually obtained by a combination of many his
grams that were obtained with various sets of simulat
parameters~e.g., at different temperatures or for differe
values of the melting enthalpy!. We extended the method t
describe bilayer systems consisting of two coupled mono
ers. From this we derived heat capacity profiles of bilayer
confined flat or curved geometries. Furthermore, we u
this method to describe the heat capacity profiles of a m
brane containing peptides that resemble either the gel or
fluid lipid state.

II. MATERIALS AND METHODS

Dipalmitoyl phosphatidylcholine was purchased fro
Avanti Polar Lipids ~Birmingham, AL!, and used without
further purification. Vesicles were prepared in a buf
@2–5-mM Hepes „4-~2-hydroxyethyl!-1-piperazineethane
sulfonic acid… EDTA ~ethylenedinitrillo tetraacetic acid!,
pH 7.5] with lipid concentrations of about 10 mM. Multila
mellar vesicles~MLV’s ! form spontaneously by dispersin
the lipids in buffer and gentle shaking above the melt
temperature of 41.5 °C. Small unilamellar vesicles~SUV’s!
were prepared by ultrasonication with 50 W for several m
utes using a Model W185 sonifier from Heat Syste
Ultrasonics~Plainview, NY!. Since SUV’s are unstable be
low the melting temperature, the respective calorime
scans were performed in the down scan mode. Gradu
small vesicles spontaneously fuse into large unilame
vesicles~LUV’s !. To prepare LUV’s, SUV’s were stored in
refrigerator at 4 °C for about two weeks.

Vesicle sizes for the different preparations have been
termined using a ‘‘Nicomp 370 Autodilute Submicron Pa
ticle Sizer’’ ~Pacific Scientific, Menlo Park, CA!. The diam-
eter of the SUV was determined to be about 2565 nm, the
diameter of the LUV was 140610 nm, and the diameter o
the MLV was about 1.560.2 mm.

Calorimetric experiments were performed on a VP ca
rimeter by Microcal~Northampton, MA!. Calorimetric scans
were performed at scan rates of5°/h ~LUV and SUV! and
0.3°/h ~MLV !.

Monte Carlo simulations were performed on triangu
31331 and 1013101 lattices with periodic boundaries usin
a Glauber algorithm as described in Refs.@8,10#. For a typi-
cal histogram for a single set of parameters 106 Monte Carlo
cycles were performed, taking about 30 mins on a LINU
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based 600-MHz PC with a Pentium III processor. One Mo
Carlo cycle corresponds to one attempt on average to cha
the state of each matrix site. For the broad histogram
cover the relevant parts of the phase space, about 100 s
histograms were matched. Each histogram contained
3200 bins.

III. THEORY AND RESULTS

A. Monolayers

In previous publications@8,10,19,11# it was shown that a
two-dimensional Ising model is well suited for describing t
chain melting transition of lipid membranes. This kind
description is sometimes referred to as the Doniach mo
@7#. Two lipid states are distributed on a triangular lattic
representing an ordered gel state and an unordered fluid
of the individual lipids. For historical reasons, instead
attributing two different spin values, we denote the tw
states with indexg ~gel! and indexf ~fluid!

The Hamiltonian of such a system can be written as

H5ngEg1nfEf1nggegg1ng feg f1nf fe f f , ~3.1!

whereEg and Ef are the internal energies of gel and flu
states, andegg , eg f , ande f f are the nearest neighbor conta
energies between two gel lipids, a gel and a fluid lipid, a
two fluid lipids, respectively. The numbersng andnf are the
numbers of gel and fluid molecules in a given matr
whereasngg , ng f , andnf f represent the numbers of respe
tive nearest neighbor contacts.

Sugaret al. @8# pointed out that this can be rewritten t
yield

H5nE01nfDE1ng fvg f ,

E05Eg1
z

2
egg ,

DE5S Ef1
z

2
e f f D2S Eg1

z

2
eggD , ~3.2!

vg f5eg f2
egg1eg f

2
,

with a coordination numberz56 for a triangular lattice. We
formally can assign volumes and areas to each lipid state~at
each site! @7#. Doniach modified his model such that ea
spin represents a given areaAg or Af , and we can also in-
troduce the volumes of each site,Vg or Vf . We therefore
define the enthalpy of a microconfiguration

H5nH01nfDH1ng fvg f

H05E01pVg1PAg ,

DH~nf ,ng f!5DE1pDV1PDA, ~3.3!

DV5Vf2Vg ,

DA5Af2Ag ,
4-2
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HISTOGRAM METHOD TO OBTAIN HEAT CAPACITIES . . . PHYSICAL REVIEW E 63 041914
introducing a bulk pressurep and a lateral pressureP.
The two lipid states are defined to be degenerate w

entropies,Sg andSf @7#. The free energy difference of eac
microstate with respect to the ground state~all lipids are gel
lipids with E5E0) is given by

DG~nf ,ng f!5nf~DH2TDS!1ng fvg f ~3.4!

DS5Sf2Sg ,

The model described in Eqs.~3.4! resembles an Ising
model in a field, where (DH2TDS) acts as the temperatur
dependent field. For each set of variablesnf andng f , there
may be various possible lipid arrangements on the ma
Thus each membrane state is degenerate. When the sim
tion is compared to a calorimetric experiment, the entha
differenceDH corresponds to the calorimetric heat of me
ing, integrated over all temperatures.DH therefore does no
reflect a latent heat~which would depend on simulation pa
rameters!, but is a parameter independent number that
directly be taken from a calorimetric experiment. The e
tropy differenceDS reflects the different order of the lipid
chains in the gel and the fluid state. It can also be determ
from calorimetry using the relationDS5DH/Tm , whereTm
is the melting temperature. AtTm the field (DH2TDS)
is zero, and both lipid states are equally probable. The in
action parametervg f determines the cooperativity~or
the transition halfwidth! of the melting process. The phas
space~variablesnf andng f) can be explored in Monte Carl
simulations@8,10#.

The mean valuêX& of any physical observable can b
obtained by averaging over all bilayer configurations a
particular temperatureT, using the statistical thermodynam
ics expression

^X~nf ,ng f ,z!&5(
nf

(
ng f

X~nf ,ng f ,z!P~nf ,ng f ,z!,

~3.5!

with the partition coefficients
th
e
os
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P~nf ,ng f ,z!5

V~nf ,ng f!expS 2
DG~nf ,ng f ,z!

RT D
(
nf

(
ng f

V~nf ,ng f!expS 2
DG~nf ,ng f ,z!

RT D ,

~3.6!

where z denotes the set of parameters,@DH,DS,vg f ,T#.
P(nf ,ng f ,z) is the probability to find a bilayer configura
tion, with nf lipids being in the fluid state andng f gel-
fluid contacts@7#. V(nf ,ng f) is the number of microstate
with given nf andng f , i.e., the density of states. It does n
depend on the parametersz of the simulation, but depend
only on the matrix size of the simulation. Thus, once det
mined, it can be used to calculate the mean value of
observablê X& for any given set of values for the param
eters,z, by using Eqs.~3.5! and~3.6! @18#. ^X& may represent
the enthalpŷ H& the mean square of the enthalpy,^H2&, the
mean volumê V&, and the mean monolayer area^A&. These
mean values can be used to calculate the heat capacity,

cp5
^H2&2^H&2

RT2
, ~3.7!

the isothermal volume compressibility,

kT
vol5

^V2&2^V&2

^V&RT
~3.8!

or the isothermal area compressibility,

kT
area5

^A2&2^A&2

^A&RT
, ~3.9!

Each Monte Carlo~MC! simulation produces a distribu
tion of statesP(nf ,ng f ,z) which can be sampled into bin
containing the sum of the probabilities in a segment of ph
space. The distribution of states in the two-dimensio
model of a lipid monolayer depends on two variables,nf and
ng f . In our simulations, the information about the probabil
distribution is put into a two-dimensional histogram wi
1003200 bins. The histogram may be used to determine
probability distribution at any other set of parametersz*
@18#:
P* ~nf ,ng f ,z* !5

P~nf ,ng f ,z!expS DG~nf ,ng f ,z!

RT
2

DG* ~nf ,ng f ,z* !

RT*
D

(
nf

(
ng f

P~nf ,ng f ,z!expS DG~nf ,ng f ,z!

RT
2

DG* ~nf ,ng f ,z* !

RT*
D ~3.10!
ram

is
er,
he
It is evident that the probability distributionP* (nf ,ng f ,z* )
can only be used to calculate thermodynamic functions if
distributionP(nf ,ng f ,z) covers most of the available phas
space. Because of finite Monte Carlo sampling, it is not p
sible to cover the whole configuration space (nf ,ng f) by a
e

-

single histogram. Figure 1 shows a representative histog
for a monolayer for a continuous transition~no latent heat! at
the heat capacity maximum. The statistics of MC sampling
good close to the distribution maximum. It is bad, howev
in the outer wings of the distribution. Thus the size of t
4-3
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FIG. 1. Histogram of the distribution of states of a monolayer at the melting temperatureTm for vg f51.3 kJ/mol~continuous transition!.
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original histogram limits the range where Eq.~3.10! is appli-
cable. The accuracy of this procedure, however, can be
nificantly improved when histograms obtained for vario
sets of parametersz* are merged into one large histogra
@23,28#. This is done in the following manner: In the regio
where the primary histogram overlaps with a secondary
tribution, the secondary histogram is recalculated with
~3.10! using the parameter setz of the primary histogram. In
the wings of the distribution, where Monte Carlo sampling
bad, it was replaced by a secondary distribution using
equivalent volume method as outlined in Ref.@28#. The con-
cept of equivalent volumes yields a scaling ratio, which w
used for subsequent merging of the two histograms into o
04191
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This matching method is very similar to the ‘‘multistag
sampling’’ technique of Valleau and Card@29#, who consid-
ered overlapping energy distributions in the calculation
the free energy of the system of hard spheres with Coulo
bic forces.

The combination of many histograms into one is shown
Fig. 2 ~left hand panel! for 12 histograms~obtained for a
fixed value forwg f at different temperatures!, and for 84
histograms~obtained for a general set of different temper
tures T and cooperativity parameterswg f) in Fig. 2 ~right
hand panel!. The outer limits of the histograms, where th
statistics are on the verge of being significant, are sho
The latter broad histogram covers all the relevant ph
vers the
FIG. 2. Matching of histograms obtained for different sets of parameters. The large histogram, shown on the right side, co
relevant range of the phase sphase.
4-4
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HISTOGRAM METHOD TO OBTAIN HEAT CAPACITIES . . . PHYSICAL REVIEW E 63 041914
space necessary to describe lipid transitions.
From this general histogram the individual histograms

a fixed set of parametersz can be obtained. In Fig. 3~left
hand panel! the effect of temperature changes close to
melting point ~fixed wg f) on the histograms is shown. Th
distribution maximum moves to larger values ofnf with in-
creasing temperature, because lipids are melting. The r
hand panel shows histograms obtained at the heat cap
maximum with different values for the cooperativity param
eterwg f . Upon an increase inwg f , the histogram undergoe
a change from a profile with a Gaussian cross-section
histogram with two maxima. While the first histogram ind
cates that the transition is continuous, the latter correspo
to a first-order behavior where two membrane states m
coexist. The middle panel of Fig. 3~b! shows a monolaye
close to its critical point. Note that the half width of th
maxima in the histogram is finite. This is due to the fin
size of the computer matrix. To summarize this we conclu
that we are able to collect the information about the ph
space such that histograms for each set of parameters ca
obtained without performing additional Monte Carlo simu
tions. Thus we are able to quasianalytically generate h
capacity profiles for each set of parameters, (DH,DS,wg f).

Let us assume that a lipid bilayer consists of two u
coupled monolayers~meaning that each monolayer may e
plore the phase space without any correlation with the o
monolayer!. Under these conditions the histogram techniq
can be used to generate quasianalytical fits for experim
tally obtained heat capacity profiles~Fig. 4!. The three pa-
rameters entering Eq.~3.10! (DH, DS, andwg f) can be de-
termined from the integrated heat capacity, the melting po
and the transition halfwidth. In Fig. 4 this has been done
three different preparations of dipalmitoyl phosphatidylch
line ~DPPC! vesicles. When dispersed in water, DPPC sp
taneously forms MLV’s in a size range of up to 1000 n
~Fig. 4, left!. These vesicles can be transformed into SUV
of approximately 25-nm radius by ultrasonification~Fig. 4,
right!, as judged from light scattering. These vesicles
metastable and slowly fuse into LUV’s of a diameter of a
proximately 140 nm~Fig. 4, center!. It can immediately be
seen that the three vesicle preparations display very diffe
transition cooperativities. MLV’s display a transition hal
width of less than 0.1°, whereas LUV’s show a 1° halfwid
and SUV’s a 2° –3° halfwidth. The second peak in the SU
preparation stems from LUV formed by some spontane
fusion events~cf. center trace!. Also shown in Fig. 4 are fits
to the curves using the histogram technique. The input
rameters into the calculation are the experimental values
the melting enthalpy,DH, and the melting entropy,DS
5DH/Tm . Disregarding the different shapes of the thr
transitions, the enthalpies used for fitting were the sa
(DH536 kJ/mol). To obtain calculated profiles similar
the experimental curves, we mainly adjusted the coopera
ity parameter,wg f . For MLV’s we usedwg f51578 J/mol,
for LUV’s 1245 J/mol and for the SUV’s 1138 J/mol. It ca
be seen that unlike nearest neighbor contributions are r
tively small~about 0.5 kT per interaction!, and that relatively
small changes in this parameter may significantly influe
the shape of the heat capacity profiles. Also, the value
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MLV’s corresponds to a first-order-like transition~cf. Fig. 3!
whereas the values for LUV’s and SUV’s rather correspo
to a continuous transition. This supports the general no
that lipid melting transitions are generally close to the critic
point. It should be noted at this point that the exact num
of wg f for MLV’s ~first-order case! should not be taken too
seriously since it depends on finite size effects. To dem
strate this we performed a finite size scaling analysis~shown
as insets in Fig. 4!, comparing the results from the histo
grams obtained from simulations on a 31331 matrix to those
obtained from simulations on a 1013101 matrix. The matrix
size has no influence on the calculated heat capacity pro
of LUV’s and SUV’s. This is different for MLV’s. Using the
same value forvg f as for the 31331 matrix, the heat capac
ity anomaly obtained from a 1013101 matrix became too
narrow be detected in our simulations. In fact, the ex
shape of the experimental heat capacity profiles of MLV
cannot be described by the Ising model using large matr
with any set of parameters. Possibly domains in multilay
are finite. When analyzing the MLV data with an all-o
nothing transition with a fixed cooperative unit size of 7
lipids @10# ~which is close to the 31331 matrix size! we
obtained good agreement with the experimental data~cf. Ref.
@10#!. This may be due to the fact that multilamellar mem
branes in the gel phase are structured into a periodical rip
pattern, which was recently postulated to define an up
limit to the domain size@11#. It also cannot be excluded tha
due to the very narrow transition halfwidth of MLV dispe
sions (<0.1°) inhomogeneities in the size distribution play
role.

B. Bilayers

The lipid bilayer is composed of two monolayers wi
partition functionsQM1

andQM2
. If the two monolayers are

uncoupled (QM1
5QM2

), the partition function of the bilayer

QB , is the product of the monolayer partition functions,

QB5QM1
QM2

5(
nf

1
(
ng f

1
(
nf

2
(
ng f

2
PB~nf

1 ,ng f
1 ,nf

2 ,ng f
2 ,z!,

~3.11!

with a set of parametersz5@DH,DS,vg f ,T# and the bilayer
partition coefficients

PB~nf
1 ,ng f

1 ,nf
2 ,ng f

2 ,z!5PM1
~nf

1 ,ng f
1 ,z!PM2

~nf
2 ,ng f

2 ,z!.
~3.12!

In a recent publication@15#, we argued that the Ising mode
may be well suited to describe not only enthalpy change
transition regimes, but also the volume and area changes
based our argument on the experimental finding that
thalpy and volume changes are proportional functions
temperature, and, further, that bending elasticities predic
from heat capacity profiles are very close to experimen
values@15,30#. For this reason we assume in the followin
that each individual lipid in the matrix possesses two sta
of enthalpy, entropy, volume, and area, respectively. T
volume difference of the two lipid states is defined
4-5
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FIG. 3. Histograms of the distribution of states of a monolayer. Left: At different temperatures forvg f51.245 kJ/mol belowTm , at Tm

and aboveTm . Right: For different cooperativities (vg f51.21, 1.36, and 1.42 kJ/mol at the melting temperatureTm . The top histogram
represents a continuous transition, the center histogram corresponds to a situation close to the critical point, and the bottom histog
a first-order-like behavior. Note the finite size effects. The histogram was obtained from a Monte Carlo simulation performed
331 matrix.
041914-6
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HISTOGRAM METHOD TO OBTAIN HEAT CAPACITIES . . . PHYSICAL REVIEW E 63 041914
FIG. 4. Fits of experimental heat capacity profiles of dipalmitoyl phosphatidylcholine~DPPC! vesicles from different preparations, usin
the histogram method. Dotted grey lines indicate the fits, solid black lines the experimental results. Left: multilamellar vesicles~MLV’s !;
center: large unilamellar vesicles~LUV’s !; right: small unilamellar vesicles~SUV’s!. The shaded area represents a residual fraction
LUV’s in the SUV preparation. Note the different scaling of the temperature axes. The MLV transition is very cooperative with a ha
of less than 0.1°. Fitting parameters are given in the text. The histogram was constructed on the basis of a 31331 matrix. Insets: finite size
scaling analysis; solid lines are the fits from the 31331 matrix simulation, and closed circles were obtained from a 1013101 matrix
simulation using identical parameters. The dotted lines correspond to an all-or-nothing transition with a fixed cooperative unit size o
MLV’s, 33 for LUV’s and 16.5 for SUV’s. For LUV’s and SUV’s the fits did not depend on matrix size. An all-or-nothing transition did
yield a reasonable description of the experimental profiles. For MLV’s, no fit with our model using large matrices could be ob
However, an all-or-nothing transition with a finite cooperative unit size of 750 lipids describes the experimental results very well.
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DV5Vf2Vg , and the area difference byDA5Af2Ag

~whereAf and Ag are the areas of fluid and gel lipids, re
spectively!. For simplicity we furthermore assume that th
coordination number of the lipids in the matrix is unaffect
by area changes. According to Eq.~3.5!, the temperature
dependence of the mean monolayer area can be calcula

In a bilayer, independent area fluctuations of both mo
layers only occur if the monolayers are uncoupled. If the t
monolayersM1 andM2 have different areas, then the bilay
will be curved. Let us assume that the area difference ca
used to calculate a mean radius of curvaturer or a mean
curvaturec51/r , as shown schematically in Fig. 5,

FIG. 5. Schematic representation of a curved bilayer, indica
area and thickness of the two monolayers.
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AA1d21AA2d1

AA22AA1

~3.13!

whereA1 andA2 are the total areas of monolayers 1 and 2
the center of each monolayer segment withn lipids, con-
structed as the sum of all individual lipid areas byA1,2

5nAg1nf
1,2DA. The monolayer thickness, defined as the a

erage lipid length, is given byd1,251/n(ndg1nf
1,2Dd). The

curvaturec is a function of the number of fluid lipids,nf
1 and

nf
2 , on either side. This coupling of membrane curvature

monolayer areas was first proposed in Ref.@24#. Values for
DA andDd were taken from the literature@15#. In our pic-
ture we assume that area changes close to a transition
dominated by the melting process of the membrane. We
glect area changes due to fluctuations of individual m
ecules other than those caused by chain isomerizations. I
unconstrained bilayer the mean curvature is a fluctua
property.

Real membranes, however, are usually not freely fluc
ating systems@11#. They exist in MLV’s which are con-
strained to a macroscopically nearly flat surface by adjac
layers. Large or small vesicles are closed structures wit
given mean curvature. A similar situation can be found
supported membranes~Fig. 6!. If the curvaturec051/r 0 is
fixed, the curvature fluctuations of the bilayer are inhibite

g
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We incorporate this constraint into the description by de
ing a curvature dependent harmonic potentialGcurv which
inhibits all bilayer states with a curvature different fromc0
51/r 0. For a flat membrane (c050), this potential is be
given by

Gcurv5aRTc~nf
1 ,nf

2!2, ~3.14!

and for a curved membrane with two equivalent curvatu
c0 and2c0 we define

Gcurv5aRT~c2c0!2 ~3.15!

or

Gcurv5aRT~c1c0!2. ~3.16!

The set of@nf
1 ,nf

2# leading to a given curvaturec is not
necessarily unique. The constanta defines the strength of th
curvature constraint. It is given a high value such that
fluctuations are constrained into a narrow interval aroun
given curvature. Using a potential of narrow width is nec
sary, because in a finite size matrix possible values for
curvature display discrete values. If a fixed curvature is c
sen that does not correspond to one of these values, on
to sample around these values in a narrow interval. In
simulationsa was chosen to be 105. However, the value ofa
does not influence the result as long as it is high enoug
confine the fluctuations around a given curvature. Thusa is
no simulation parameter.

The probability of finding a bilayer at a given poin
(nf

1 ,ng f
1 ,nf

2 ,ng f
2 ) in phase space is given by

PB~nf
1 ,ng f

1 ,nf
2 ,ng f

2 ,z!

5
1

QB
PM1

~nf
1 ,ng f

1 ,z!PM2
~nf

2 ,ng f
2 ,z!

3expS 2
Gcurv~c!

RT D , ~3.17!

FIG. 6. Schematic drawing of an unsupported undulating me
brane~A!, a flat supported membrane~B!, and a curved supporte
membrane~C!. The unsupported membrane can freely adopt
available curvature states. The supported membranes in contra
constrained in the ratio between the areas of the two monolaye
04191
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where the monolayer partition coefficientsPM1
andPM2

are

identical to those defined in Eq.~3.6!. The partition function
of the curved bilayer,QB , normalizes the partition coeffi
cients such thatSPB51.

Using constraints one can calculate the thermodyna
observables for lipid bilayers with different curvature~Fig.
7!. Using the partition coefficients of Eq.~3.17!, one can
obtain the mean enthalpŷH& and the heat capacitycp . In
Fig. 7 the results for two different curvatures,c50 ~flat
membrane! and 1/c5r 560 nm, are given. The latter curva
ture approximately corresponds to large unilamellar vesic
It can be seen that the heat capacity profile of the cur
membrane~as compared to a flat membrane! is broadened
and thecP maximum is less pronounced. In the outer win
the heat capacity of the curved membrane is increased.
enthalpy change with temperature is broadened. Since cu
ture requires an asymmetry of gel and fluid lipids, even
very low temperatures the excess enthalpy does not appr
zero~some fluid lipids remain on the outer monolayer!. The
same argument is equally true at high temperatures, wh
some gel lipids remain on the inner monolayer. The entro
of the system, either calculated fromS52kSPi ln Pi or
from integrating the heat capacity@DS5*(cP /T)dT# shows
a similar temperature dependence. From both enthalpy
entropy profiles the Gibbs free energyG can be derived for
the two curvatures. The free energy difference of the t
curvature states,DG, corresponds to the elastic free ener
necessary to bend the membrane~Fig. 7, bottom right panel!.
Obviously the free energy of bending displays a minimum
the melting temperature, in agreement with earlier theoret
considerations@15# and with experiments@30,31,25#. This
means that the bending rigidity is largely decreased in
transition regime. At the heat capacity maximum of LUV
the bending modulus was found to be about five tim
smaller than in the fluid phase. Calculations of this kind we
used in Ref.@26# to rationalize structural transitions in an
ionic lipid vesicles.

C. Lipid systems containing peptides

Let us now consider a lipid monolayer containing a sm
peptide similar in size to a lipid, e.g., an integrala-helical
peptide. This problem can generally only be solved with
two-component Monte Carlo simulation. As in Eq.~3.4!, the
Gibbs free energy of a given configuration is

DG~nf ,ngp ,nf p ,ng f!5nf~DH2TDS!1ng fvg f1ngpvgp

1nf pv f p , ~3.18!

wherevgp andv f p are contacts between the gel and pept
and the fluid and peptide, respectively. The histogr
method presented here, however, allows us to calcula
special case of a lipid-peptide system, where the peptide
sembles either the gel fluid lipid state. Peptides differ fro
gel lipids only in that peptides cannot melt. Such a case w
considered in Ref.@10#. In the following let us assume that
peptide has similar properties to those of a gel lipid. T

-
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FIG. 7. Heat capacity, enthalpy, entropy and Gibbs free energy profiles for bilayers with two different mean curvatures,c50 ~solid lines!
and 1/c5r 560 nm ~dotted lines!, calculated by using a histogram as given in Eq.~3.17!. Upon bilayer bending heat capacity profiles a
broadened~left hand panel!. Enthalpy and entropy of the membrane are significantly affected~center panels!. The temperature dependenc
of the Gibbs free energy profiles are altered. The Gibbs free energy differenceDG corresponds to the bending free energy . It display
minimum at the melting temperatureTm ~right hand panels!. Simulation parameters wereDH536.4 kJ/mol,DS5117 J/mol deg, and
vg f51.3 kJ/mol.
p-

th
-
fo

-
o-
implies that the interfacial energy of a gel lipid with a pe
tide is similar to the contact between two gel lipids (vgp
50), whereas a fluid lipid-peptide contact contributes to
overall Hamiltonian withv f p5vg f . This case is schemati
cally shown in Fig. 8. It leads to a simplified expression
the Gibbs free energy for a given configuration of
r

to
de
om

th
ym

E

to
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DG~nf ,ng f ,nf p!5nf~DH2TDS!1~ng f
f p!vg f ,

~3.19!

whereng f
p f5ng f1np f . With this expression the partition co

efficients for this system can be derived from the lipid mon
layer histogram,
P~nf ,ng f
f p ,z!5

V~nf ,ng f
f p ,z!

~ng1np!!

ng!np!
expS 2

DG~nf ,ng f
f p ,z!

RT D
(
nf

(
ng f

V~nf ,ng f
f p ,z!

~ng1np!!

ng!np!
expS 2

DG~nf ,ng f
f p ,z!

RT D , ~3.20!
e
rre-
uid

ad
ni-
be
ent
r-
where ng f
f p5ng f1nf p , and z is the set of paramete

@DH,DS,vg f ,T#. Equation ~3.20! resembles Eq.~3.6! ex-
cept for an additional combinatorial term, (ng
1np)!/ng!np!, which accounts for the number of ways
arrangenp gel-like peptides on the sites for gel and pepti
in a given configuration. The heat capacities derived fr
this expression for different peptide concentrationsnp are
given in Fig. 9. Depending on the peptide concentration,
cP profiles are shifted to higher temperatures and are as
metrically broadened, in agreement with Ref.@10#. For com-
parison, the results of a Monte Carlo simulation based on
~3.18! are also given in Fig. 9~solid symbols!. They are in
exact agreement with the solid line obtained from a his
e
-

q.

-

gram @Eq. ~3.20!#. In the Monte Carlo simulation it can b
seen that the asymmetry of the heat capacity profiles co
sponds to an aggregation of the gel-like peptides in the fl
lipid membrane~cf. Ref. @10#! due to unfavorable fluid-
peptide contacts.

IV. DISCUSSION

Using Monte Carlo simulations, we constructed a bro
histogram for a lipid monolayer based on a two-state Do
ach model@7#. We demonstrated how this histogram can
used to fit the experimental heat capacity profiles of differ
vesicular preparations of the zwitterionic lipid DPPC. Fu
4-9
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VESSELKA P. IVANOVA AND THOMAS HEIMBURG PHYSICAL REVIEW E63 041914
thermore, we used the monolayer histogram to calculate
behavior of lipid bilayers. This approach allows one to ga
insight into many problems involving membrane bendi
that are not intuitive. We demonstrated that curvature le
to a broadening of thecP profile, and that the free energy o
the bending reaches a minimum at the melting temperat
in agreement with experimental results@30,31# and previous
predictions@15#. We were also able to use the histogra
method for a special case of membranes containing r
peptides. Since the histogram contains the information fo
relevant sets of parameters, it is possible to quasianalytic
generate temperature profiles of the thermodynamic obs
ables and the heat capacity.

Histogram reweighting methods to obtain thermodynam
observables as a continuous function of variables like te
perature have been widely used. The technique was o
nally introduced in Ref.@29# and extended in Refs.@18,23#.
Histograms can be obtained for a specific set of parame
and used to calculate thermodynamic functions in the e
ronment of the maximum of the original histogram. For
determination of the observables for a general set of par
eters, one requires a broad histogram, covering most of
available phase space. This can be done by several meth
One can obtain the basic histogram at a critical point wh
fluctuations are large@19#. One can also combine many hi
tograms obtained for different sets of parameters into
broad histogram by using reweighting and matching te
niques@29,23,28#. An alternative approach, leading to broa
histograms using a Monte Carlo method different from
Metropolis algorithm, was described in Refs.@32,33#. The
multiple histogram method, proposed in Ref.@34#, uses the
dynamical ensemble@35#. In this paper we used a histogra
technique as described in Ref.@18#, and matched the histo
grams using a method similar to that introduced in Re
@29,28#. Histogram methods have also been used to desc
thermodynamic properties of membranes@20,14,4,36–38#.
They were mainly applied to a ten-state Pink model or o
lattice Ising models@37,38#—systems that are too comple
to obtain a universal broad histogram. The present pape
based on a two-state Doniach model@7#. Since it has only
two variables, the number of fluid lipids and the number
contacts, one can create a two-dimensional broad histog
~Fig. 2!.

Ising-like models have also been used previously to a
lyze lipid melting behavior@3,8,10,19,9,11#. In this paper we
successfully used a broad histogram to fit the heat capa
profiles of various vesicular preparations of different me
curvature. This was done by varying the interfacial coop
ativity parametervg f with constant values for the meltin
enthalpy for a monolayer system, which is identical to
suming a bilayer with uncoupled monolayers. The outco
is that smaller systems with higher mean curvatures displ
lower cooperativity. A lipid system with a lower meltin
cooperativity also possesses more pronounced wings o
cP profile. A finite size scaling analysis indicated that fits
the cP profiles of unilamellar vesicle preparations are ind
pendent of the matrix size. Multilamellar vesicles could on
be described by limiting the maximum domain size or t
size of the simulation matrix, respectively. This may be d
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to the finding that below the main chain melting transition
periodic ripple phase exists which has been proposed to l
domain sizes@11#. Thus the transition in MLV’s resemble
an all-or-nothing transition in a finite system of about 7
lipids. It could be well described by our histogram techniq
because the matrix size chosen by us is in this range~961
lipids!. We were unable to describe it with a larger matr
using the Ising model. However, it cannot be excluded t
due to the very narrow transition halfwidth heterogeneities
the sample~e.g., vesicular size variations! also play a role. It
is unlikely that a more sophisticated model as the ten-s
Pink model would yield better results. It has been found t
the Pink model results in more pronounced wings of
transition profile @3#. In our experiments, however, pro
nounced wings are absent in the MLV profiles. An all-o
nothing transition, however, did not result in a reasona
description for LUV’s and SUV’s, which are not of first
order type.

Lipid bilayers consist of two monolayers. If the tw
monolayers are uncoupled they may freely fluctuate in lo
curvature. The curvature fluctuations are sometimes also
ferred to as undulations@39,40#. One conclusion from the
present simulations was that curvature broadens the hea
pacity profiles. This was also found experimentally in lip
membranes supported by latex beads of various curva
@27#. This suggests that the broadening of the experime
profiles in Fig. 4 may be partially caused by curvature.
fixed curvature acts as a reduction in cooperativity beca
fluctuations are hindered. In our model the number of lip
on both sides is kept constant. This assumption was use
an earlier paper@15# to predict the changes in curvature ela
ticity caused by fluctuations close to the melting transitio
Recently these predictions were compared to experime
results on the membrane bending elasticity obtained us
optical tweezers@25,41#. A perfect agreement between pr
diction and experimental result was found. We conclu
therefore, that our approach to fix the number of lipids
both sides is reasonable on typical experimental time sca
Of course these considerations require that the number
lipids on both monolayers are fixed. In the experimental s
tems shown in Fig. 4, the numbers of lipids on the outer a
the inner monolayer may be different. In fact, curvature w
result in a thermodynamic driving force that promotes
exchange between the inner and outer layers. At thecP maxi-
mum the heat capacity is reduced as a consequence o
curvature. We concluded that the elasticity of curved s
ported membranes in the phase transition region is redu
as compared to a flat supported membrane. The curva
elasticity is related to fluctuations in the membrane cur
ture. Hongeret al. @40# explained an unusual swelling of th
multilamellar spacing of lipid vesicles close to the meltin
transition with curvature fluctuations. Fluctuations in t
monolayer area have also been used to predict the temp
ture dependent reduction of the bending modulus close to
chain melting reaction@15#, which were in agreement with
experimental data based on flickering analysis of vesicu
shapes@30,31#. Schneideret al. @26# argued that the experi
mentally observed change in elasticity must lead to a bro
ening of the heat capacity profiles, using an argument tha
4-10
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HISTOGRAM METHOD TO OBTAIN HEAT CAPACITIES . . . PHYSICAL REVIEW E 63 041914
just the reverse of the one presented here. In this paper
calculated the free energy of bending from calculated h
capacity traces using the histogram method.

The decrease in bending rigidity gives rise to an enhan
probability of lipid vesicles undergoing structural chang
close to the chain melting transition. The decrease of
elastic free energy necessary to bend membranes~as shown
in Fig. 7! was used in Ref.@26# to explain structural transi
tions in charged lipid membranes. In these systems a cha
in vesicular morphology from vesicles to an extended bila
network occurs close to the melting temperature. This w
actually made use of some of the concepts outlined h
Another structural transition is the ripple phase formation.
most lipid systems one finds a small enthalpy transition
low the main transition called a pretransition. It is linked
the formation of periodic membrane ripples. This transiti
was recently explained by the decrease in bending rigi
close to the chain melting transition@11#, accompanied by
the formation of a repeating pattern of gel and fluid lip
domains. It is likely that similar structural transitions occ
frequently close toTm .

Peptides and proteins have a pronounced effect on m
ing transitions. Usually lipid melting profiles are broaden
and shifted, depending on the nature of the peptides and
lipids. It is believed that a significant source of the effect
the proteins originates from the ‘‘hydrophobic matching
@42#. If the length of the hydrophobic core of the protein
different from the lipid chain length, the interaction betwe
the two components is unfavorable, and they do not m
well. In experimental studies where the lipid chain leng
was altered it could be seen that the effect of peptides on
melting reaction varies significantly@43#. The relevance of
the hydrophobic matching condition was recently review
@44#. It was shown that there is considerable evidence of
importance for biological function. In the melting transitio
the thickness of bilayers decreases by about 16%@15#.
Therefore, it is likely that the interaction of the proteins wi
the two lipid phases is not the same and that good mixing
one phase implies unfavorable mixing in the other state.
corresponding phase diagrams were discussed theoreti
in Refs. @42,21,45#. Thus it is likely that proteins cluster o
aggregate in one phase or the other. This change in pro
distribution has pronounced effects on the melting beha
@10#. The cP traces are shifted and asymmetrically broa

FIG. 8. Scheme of the nearest neighbor interactions in a l
monolayer containing gel lipids, fluid lipids, and peptides. Sho
are gel-fluid contacts and gel-peptide contacts.
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ened. From the shape of the melting curves one can in p
ciple deduce how the components mix in either phase. F
suitable chain length of the lipids one can find proteins t
mix well with one membrane state and do not mix with t
other membrane state. Using the monolayer histogram te
nique we calculated thecP curves for membranes containin
peptides that mix well with the gel state and demix in t
fluid state~Fig. 9!. Depending on the peptide concentratio
the curves are progressively shifted to higher temperatu
and asymmetrically broadened with a shoulder at the h
temperature end. Such a case was previously described
retically in Refs.@42,10#. An experimental example for suc
a case is the mixing of the band-3 protein of erythrocy
with phosphatidylcholine membranes@46#. For a lipid chain
length where the peptides mix well with the fluid phase, t
situation is opposite:cP profiles are shifted to lower tempera
tures with a shoulder on the low temperature site. This c
can be treated equally well by exchangingnf p with ngp and
ng with nf in Eq. ~3.20!. Experimental examples for such
case are given in Ref.@43#.

d

FIG. 9. Calculated heat capacity profile of a membrane cont
ing various fractions of a gel-like peptide. Solid lines: calculat
from Eq. ~3.20!. Small circles: calculated from a two compone
Monte Carlo simulation.
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V. CONCLUSIONS

In this paper we described how a broad histogram met
for lipid monolayers can be used to calculate properties
bilayers with different fixed curvatures, and simple syste
containing peptides. We demonstrated that a simple mod
able to rationalize properties of quite complex lipid system
The main advantages of this approach are its simplicity
ys
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the fact that the histogram approach yields quasianalyt
solutions for the general thermodynamic behavior of me
branes.
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